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ABSTRACT 
 

Power efficiency and ease of programming are key issues 
in the implementation of real-time systems in airborne and 
space-based applications.  This paper describes a radiation 
tolerant processor designed for space-based Radar 
applications.  The proposed system achieves real-time 
performance while minimizing power consumption. It is a 
fully programmable general purpose processor that can be 
used for existing and future Radar signal processing 
algorithms as well as other computationally intensive tasks.  In 
addition to programmability, the processor and I/O design 
facilitate scaling to thousands of processors.  

The system is based on synthesizable VHDL and can be 
Radiation hardened by design or by process technology. This 
paper gives an overview of the processor design.  Further, it 
explains the software environment and tools available for the 
programmers.  All of the software tools are open source and 
many are based on the GNU tools.  [1] 

In this paper we present the performance of some of the 
key routines such as Fast Fourier Transform, and Householder 
Q/R factorization used for matrix inversion.  Also presented is 
a sample Radar application that includes a Joint Domain 
Localized (JDL) Space Time Adaptive Processing (STAP) 
algorithm.  

 
1.  BACKGROUND 

 
This work was based on an existing Air Force Research 

Laboratory (AFRL) processor design that exhibited excellent 
power efficiency allowing it to be packaged into dense 3-D 
multi-chip-modules.  [2] The design was referred to as the 
Wafer Scale Signal Processor (WSSP).  It was only partially 
synthesizable and was implemented in 0.5 micron technology.  
Currently the design is targeted to 0.18 and 0.13 micron 
technology under two different efforts.    

The major changes that have taken place include making 
the VHDL fully synthesizable, adding a cache, changing the 
I/O interfaces from PCI and Myrinet to 10 Gigabit Ethernet, 
and emulating the processor on Field Programmable Gate 
Arrays (FPGAs). 

Original plan, in 0.13 micron technology, called for 16 
processors each with one Megabyte of on-chip memory on a 
single die with a 10 Gigabit Ethernet switch. However the 
funding has been reduced requiring a major descope in the 

design.  Currently it is planned to demonstrate a smaller 
number of processors excluding the on-chip Ethernet crossbar 
switch. 

 
2.  PROCESSING ELEMENTS 

 
The main objective of this design is to provide the Signal 

Processing community with a flexible general purpose floating 
point processor that is power efficient and open source. Open 
source allows it to be customized as needed and facilitates 
system integration and debugging.   

The WSSP is a general purpose floating point processor 
designed to produce maximum efficiency for vectored 
operations which constitute the main building blocks of signal 
processing algorithms.  The WSSP can perform two single 
precision floating point multiplications and two single 
precision floating point additions per clock cycle, or two 
double precision operations per clock cycle.  That produces a 
peak performance of 4 FLOPs/clock.  Its estimated speed in 
0.13 micron technology is 250 MHz, yielding 1.0 GFLOP/sec 
as a peak performance per processor.  Power consumption is 
much more difficult to determine.  A rough estimate is 
between 2 and 10 GFLOPs/watt. 

The processor can be customized to each application or 
set of applications.  For Radar signal processing, a 
configuration that is very effective is to have numerous 
processors each with a small (1 or 2 Mbyte) on-chip memory 
while one processor in 6 to one in 18 has a larger amount of 
external memory.  

The processors with their cache and I/O interface are 
optionally used in groups of three.  This allows voting of 
outputs to mitigate single event upsets.  The on-chip memory 
is protected with an Error Correcting Code (ECC) providing 
single bit corrections and multi-bit detection.  And the 
interface I/O has two Cyclic Redundancy Check (CRC) codes. 
The first protects the header information and the second CRC 
forms the CRC for the entire packet. 

The processors can write directly to each other’s 
memories using a special Ethernet direct write packet.  The 
first CRC provides protection of the header data which 
contains the memory address where the remainder of the 
packet is to be stored.   

The cache memory is fully associative allowing any 
memory location to be mapped into any line.  With just 16 
cache lines, 32 bytes wide, the processor’s most complex 
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instruction (the radix 4 FFT) is able to sustain full speed.  This 
case assumes a 4 cycle access latency to the on-chip memory. 

If a unique signal processing function is required and it 
does not map well to the existing set of vector instructions, 
new micro-code instructions can be added using the writeable 
control store.  The assembler has been enhanced to allow 
dynamic addition of instructions without the need to 
recompile. 

Finally, each processor core has an interrupt unit with 7 
levels of interrupt requests.  The seventh interrupt level is non-
maskable. 

 
3.  SOFTWARE DEVELOPMENT SUITE 

 
The processor comes with a complete suite of software 

development tools.  The software suite consists of C/C++ 
cross compiler, assembler, linker, simulator, and debugger.  
Most of the software tools are derived from standard gnu 
tools.   

All software tools have standard UNIX man pages that 
explain their use and different options for each tool.  In 
addition to the man pages, there is documentation including a 
user manual and operating instructions explaining the use of 
the system. 

 
3.1  ISA (Instruction Set Architecture) Simulator 
 

The WSSP simulator is the central piece of software in 
the development suite.  It simulates the behavior of the WSSP 
processing element at the level of the assembly instruction 
code.  The ISA simulator simulates the behavior of the WSSP 
down to the number of clock cycles used by every assembly 
instruction. 

In addition to the simulation of the WSSP element, the 
ISA simulator also simulates the memory attached to the 
processing element and the network through which messages 
are exchanged between processors and different nodes in the 
system. 

With the capability of simulating the number of clock 
cycles taken by each assembly instruction, the ISA simulator 
can accurately profile the performance of the code.  The ISA 
simulator provides the user with a complete list of 
performance measures such as total number of clock cycles, 
total number of vector or scalar floating point operations, and 
the power consumption taken by the execution of the 
simulated program.  The power consumption data is for the 
existing older generation hardware.  The simulator was given 
the measured power numbers for each instruction and they are 
used to calculate the power for any given program.  In 
addition, the ISA simulator’s profiler can also be set to report 
the percentage of time in each subroutine relative to the total 
time of the whole program.  It can also be set to report the 
number of branch calls, or cache hits/misses to get a good 
evaluation of the system performance. 

 
The ISA simulator is also used as an interface to the 

hardware.  During software development it makes all the 
resources of the host system available, providing file access 
and display services to the embedded processors.  It is also 

possible to run a system of simulated processing elements 
mixed with actual hardware processors.  This enables 
localizing the debugging process by replacing the failing 
hardware processor with a simulated one and watching the 
exact replica of the program running in the simulation 
environment where more information is available. 

 
3.2 Debugger with (Data Display Debugger) DDD GUI 
Interface 

 
It is important for the developer to be able to monitor and 

debug the execution of an algorithm.  The WSSP software 
suite includes the WSSP debugger, which is derived from the 
gnu debugger.  The WSSP debugger comes also with the DDD 
GUI interface. 

With the assistance of the WSSP debugger, the developer 
can monitor the status of any program.  It provides the ability 
to step through the code in a single or multiple step modes.  
The debugger can also be accessed remotely through a secure 
shell with X-Windows capability.  The remote access is done 
through communication with sockets.  This approach reduces 
the response time by running the core software on the remote 
access machine, and exchanging only data through the remote 
socket. 
The remote accessibility is one of the major advantages of the 
software development tools of the WSSP environment.  Users 
can run and debug their applications without having to be 
physically on-site.  This feature has been used with an FPGA 
emulation of the processor, allowing remote programmers to 
emulate on multiple processors over the internet. 

 
3.3  Real-time operating system RTEMS 

 
The Army developed Real-Time Executive for 

Military/Multi-processor Systems (RTEMS) was chosen as the 
operating system for the WSSP.  RTEMS is a multi-
processing real-time system with desirable features for real-
time applications. [3]   Extra features have been added to 
RTEMS in order to meet the requirements of the new 
platform.  One of the added features is the dynamic message 
passing mechanism.  The new system is called DMPI 
(Dynamic Message Passing Interface).  The DMPI is based on 
the subscriber/publisher model. When a process publishes a 
message, either one or many subscribers can subscribe to 
receive that message. This gives more flexibility for 
exchanging data between processes. At the same time, new 
receivers or transmitters can be spawned based on the 
throughput and the dynamic loading of the system. 
The operating system environment also allows for dynamic 
process re-allocation.  The dynamic process re-allocation 
feature provides the flexibility to change the number and type 
of processes during run time.  This allows the user to switch 
between different modes of operation.  One example is to have 
two modes of operations such as GMTI and SAR.  During the 
mission the user can switch between the two operating modes 
in a gradual manner.  As processors complete one mode they 
are switched over to the next without having to have them all 
complete the first mode prior to switching any to the second 
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mode.  This prevents dead time in the Radar time-line while 
waiting for the processing of one mode to complete. 

 
3.4  FPGA Emulation on HHPC 

 
The processor is available as fully synthesizable VHDL 

code.  The code has been successfully loaded and tested on a 
Heterogeneous High Performance Computer (HHPC) 
containing Xilinx VirtixII FPGAs.  The HHPC consist of 48 
dual Pentium nodes each with an Annapolis WildstarII card.  
Each WildstarII card contains two Xilinx Virtex II 6 million 
gate FPGAs.   

The core of a processor consumes 35% of the area of one 
6 million gate Xilinx FPGA.  Currently the core has been 
tested at 20 MHz. Work is planned to improve the speed on 
the FPGA version of the processor to 70 MHz.  Currently the 
emulation is being used to find any rarely occurring bugs.  It 
allows a much larger set of tests to be run relative to the 
VHDL simulations that run a factor of one million times 
slower. 

Fixing problems in the emulation stage is faster and less 
expensive than doing so after building the ASIC.  That is why 
the FPGA emulation is an important concept in the design 
cycle of the processor. 

The FPGA emulation is available on the HHPC in Rome, 
NY.  US DOD users can remotely access the emulation 
through Kerberos secure access. The emulation is also 
available for DOD users who want to test or verify software 
on the processor. 

 
4.  PERFORMANCE OF KEY ROUTINES 

 
The following section summarizes some of the simulated 

results that were run using the ISA simulator.  Tests have been 
run on common functions widely used in Radar signal 
processing algorithms such as FFT, Pulse Compression and 
QR factorization.  In addition JDL STAP was chosen as an 
example of an algorithm used in ground moving target 
detection applications. 

 
4.1  FFT Performance 

 
The WSSP ISA Simulator was used to capture flop and 

clock count performance of single precision complex one 
dimensional FFT functions for different size data sets. 
Simulation results of both Radix-4 and Radix-2 cases are 
shown in the following figures.  Figure 1 shows the 
flops/clock ratio and the percentage of peak efficiency 
recorded for different FFT sizes where 4 flops per clock 
equals 100% of peak computation efficiency for the processor. 
Figure 2 shows memory requirements and total FLOPs for 
different one dimensional FFT sizes.  
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Figure 1 Flop/Clock Ratio and Efficiencies for various 

FFT sizes 
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Figure 2 Memory and FLOP requirements for various 

FFT sizes 
 

4.2  Pulse Compression Performance 
 
After fully characterizing the FFT library, a pulse 

compression test was then run to determine its performance. 
The received signal pulse compression was implemented with 
a forward FFT, a complex multiply with the reference chirp 
signal spectrum and an inverse FFT.  

Figure 3 shows the flops/clock ratio and the percentage of 
peak efficiency recorded for different compression lengths, 
again where 4 flops per clock is the 100% peak computation 
efficiency of the processor.  The performance for the larger 
data sets is approximately 50% of peak. The memory 
requirements are only slightly larger than the FFT 
requirements to include the reference radar transmit signal 
storage. 
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Pulse Compression Performance
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Figure 3 Compression Flop/Clock Ratio and Efficiencies 

for different FFT sizes 
 
4.3  QR Factorization Performance 

 
QR Factorization performance is very significant to the 

overall system processing requirements. Depending on the 
parameters it can account for 80% or more of the total system 
signal processing requirement.  Here the least squares 
estimation replaces the traditional matrix inverse and a sliding 
window R matrix block update and QR back solve is applied 
as the weight calculations are moved along the range 
dimension.  With that in mind, the performance of the block 
update as shown in Figure 4 was determined. A processing 
efficiency of approximately 60% was achieved on a 9 degrees-
of-freedom (DOF) case, or 9 by 9 matrix. The efficiency 
improves as the DOF increases.    
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Figure 4 QR block update FLOPS/clock for various 

lengths. 

 
 
 

4.4  JDL Performance 
 
The JDL STAP processing efficiency for a 9 DOF size 

was 30% including the additional Q matrix back solve, local 
data handling and final weight calculation.    Large scale 
simulations of the complete processing chain are currently in 
progress. 

Since the JDL STAP processing has a high FLOP to I/O 
ratio numerous processors can be applied to the task with a 
relatively minor impact on the overall processing efficiency.   

Figure 5 shows a block diagram of the complete 
processing chain from pulse compression through Constant 
False Alarm Rate (CFAR) detection.  
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Figure 5 Block diagram for Joint Domain Localized 

Space Time Adaptive Processing. 
 

A typical data flow would start with pulse compression 
across numerous processors, followed by saving of the data to 
a large DRAM.  Next the data is taken out across the pulses as 
opposed to in the range direction.  In other words the DRAM 
is used to corner turn the data by either writing it or reading it 
with non-unit stride addresses.  There are ways to accelerate 
the non-unit stride access so that they do not become a 
bottleneck.  The pulse ordered data is then Doppler processed 
by numerous processors and returned to the DRAM. JDL 
STAP processing can then be assigned to a large number of 
processors due to its high FLOP to I/O ratio.   Generally the 
required latency for a given Coherent Processing Interval 
(CPI) is large enough to allow numerous CPIs to be processed 
in parallel.  

 
5.  SUMMARY 

 
Power efficiency and ease of programming are key issues 

in the implementation of real-time processors for space-based 
applications.  This paper reviewed a synthesizable processor 
and its development environment as it applies to space-based 
Radar applications.  The system consists of fully 
programmable general purpose processors that can be used 
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with existing and future Radar signal processing algorithms as 
well as for other computationally intensive tasks.  The I/O and 
support software allow thousands of the processors to be used 
together in a high performance computer.  

 
In addition to the synthesizable hardware a complete suite 

of integrated development software tools is available, 
including a compiler, assembler, debugger, simulator, 
emulator, real-time multi-processing operating system, math 
libraries, and message passing routines.  All of the software 
tools are open source and many are based on the GNU tools. 

This paper presented the performance of some of the key 
routines such as Fast Fourier Transforms, and Q/R Household 

factorization used for matrix inversion.  Benchmark 
performance data was presented for Joint Domain Localized 
Space Time Adaptive Processing (JDL STAP).  
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